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ABSTRACT
During development of the central nervous system, a small pool of stem cells and progenitors
generate the vast neural diversity required for neural circuit formation and behavior. Neural stem
and progenitor cells often generate different progeny in response to the same signaling cue (e.g.
Notch or Hedgehog), including no response at all. How does stem cell competence to respond to
signaling cues change over time? Recently, epigenetics particularly chromatin remodeling – has
emerged as a powerful mechanism to control stem cell competence. Here we review recent
Drosophila and vertebrate literature describing the effect of epigenetic changes on neural stem cell
competence.

Introduction

Understanding the genetic and molecular mecha-
nisms that allow stem cells to generate distinct cell
types over time is critical to our broader under-
standing of animal development and how to repro-
gram adult stem cells to regenerate tissues
damaged from injury or disease. It is well known
that extrinsic niche-derived cues can alter stem
cells’ self-renewal and differentiation,1,2,3,4 but stem
cells often have heterogeneous responses to a single
cue (Fig. 1), and how stem cells change their com-
petence to respond to a specific cue has only
recently been characterized. Here we use the term
“competence” to describe the ability of a stem cell
to respond to an extrinsic or intrinsic cue – for
example, a progenitor at one stage of development
may be competent to proliferate in response to
active Notch signaling, but the same progenitor at
a later state of development may be non-competent
to respond to the same Notch signal. There are
many ways a stem cell might change its compe-
tence to respond to a cue, but recently the role of
epigenetic remodeling of the stem cell genome has

emerged as an important process in controlling
stem cell competence.

Epigenetic changes to the genomes of neural
stem cell lineages represent a powerful mechanism
for regulating competence during development.
When loci that are targets of activation by molecu-
lar cues are epigenetically remodeled, the compe-
tence of neural progenitors to respond to the cue
changes. For example, histone-modifying protein
complexes, such as BAF, can be recruited to suites
of loci by DNA-binding proteins, and induce
changes in chromatin conformation that permit
gene expression.5 Additionally, the Polycomb
repressive complex (PRC) can have the opposite
effect, inducing the formation of heterochromatin
and gene silencing.6 Thus, the relative activity BAF
and PRC at target genes can determine the compe-
tence of neural progenitors to respond to a molecu-
lar cue.

Here we focus on evidence that neural stem cells
change competence over time to generate different
responses to a single cue; and highlight examples
where changes in stem cell competence are due to
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epigenetic modifications. We highlight how findings
in multiple model organisms demonstrate that
changes in stem cell competence are relevant for
generating neuronal diversity during embryogene-
sis, as well as preventing tumorigenesis in adult
stem cells.

To maintain the focus of this review, we do not
cover work in non-neural stem cells, which has been
reviewed elsewhere.7 The gain and loss of stem cell
competence via known or likely epigenetic modifica-
tion is a conserved developmental strategy to generate
neuronal diversity from a relatively small pool of neu-
ral stem cells.

Drosophila

The Drosophila CNS is generated by neural stem
cells called neuroblasts, which undergo a series of
asymmetric divisions to generate progeny with a
more restricted fate. The most common “type I”
neuroblast lineage produces ganglion mother cells
(GMCs) which undergo a terminal division to gen-
erate a pair of neurons or glia; these neuroblasts
can be found in the embryo, the larval optic lobe,
and the larval central brain (Fig. 2a, b).8,9,10 The
rarer Type II neuroblasts are located in the dorso-
medial region of the central brain (Fig. 2a).10,11,12

Type II neuroblasts produce a series of intermedi-
ate neural progenitors (INPs) that each divide
asymmetrically to generate 4–6 GMCs which make

8–12 neurons, and thus they give rise to large
clones of neurons that contribute to the adult cen-
tral complex (Fig. 2c).13,14,15 In this section, we will
discuss how (a) embryonic type I neuroblasts lose
competence to respond to early temporal transcrip-
tion factors due to changes in subnuclear gene
position, (b) larval type I neuroblasts lose compe-
tence to respond to oncogenic mutations, (c) larval
INPs lose competence to respond to Notch signal-
ing, (d) larval type II neuroblasts use Trithorax to
maintain competence to generate INPs, and (e)
sensory neuron progenitors change competence to
respond to Notch signaling.

Aging embryonic neuroblasts lose competence to
respond to early temporal transcription factors via
subnuclear genome reorganization and PRC1/2
complex function

Embryonic neuroblasts of the ventral nerve cord
(VNC) can be uniquely identified by their position,
molecular markers, and the stereotyped clone of neu-
ral progeny they produce.16 Neuronal identity is deter-
mined by the spatial identity of the parental
neuroblast in combination with “temporal transcrip-
tion factors” which are sequentially expressed by most
neuroblasts as they progress through their lineage.
The temporal transcription factor cascade is Hunch-
back (Hb; Ikaros in mammals), Kruppel (Kr), Nub-
bin/Pou domain 2 (Pdm), and Castor (Casz1 in
mammals). Loss of Hb or Kr leads to failure to specify
the neurons born during these expression windows,
whereas forced misexpression of Hb or Kr results in
ectopic first-born or second-born neuron sub-
types,17,18,19 in part by Hb positively regulating its
own expression.20 However, pulses of Hb or Kr later
in the embryonic neuroblast lineages fail to induce
early neuronal fates: the neuroblast has lost compe-
tence to respond to these transcription factors.21,22

Recent work has shown that loss of competence to
respond to Hb is due to movement of the hb locus to
the nuclear lamina in aging neuroblasts, thereby pre-
venting ectopic Hb protein from inducing endogenous
hb transcription.20 In contrast, loss of competence to
respond to Kr is due to activity of Polycomb repressive
complex (PRC) activity,23 presumably by making Kr
target genes inaccessible. It will be interesting to see if
both mechanisms are linked: do both Hb and Kr target
genes move to the nuclear lamina? Is this movement a

Figure 1. Illustration showing how a single developmental cue
(gray arrow) can produce multiple outcomes depending on varia-
tions in stem cell competence (multicolored triangle). Note that
in some cases a potent signal (gray arrow) can generate no
response if the cell has lost competence to respond (bottom right
output).

e1324260-2 D. R. FARNSWORTH AND C. Q. DOE



cause or consequence of PRC recruitment to these
loci?

Larval type I neuroblasts lose competence
to respond to oncogenic mutations

Drosophila embryonic and early larval type I neuro-
blasts coordinately express 2 RNA-binding proteins
(Imp/IGF2BP and Lin-28) and a transcription factor
(Chinmo); they are all downregulated in neuroblasts
during the second half of larval life.24,25,26,27,28 Recent
work has shown that this suite of factors gives neuro-
blasts competence to form malignant tumors in
response to several oncogenic mutations, including

mutants in transcription factors (Prospero, Nerfin-1),
and an RNA-binding protein (Brain tumor; Brat).
Importantly, older neuroblasts during the second half
of larval life are still proliferating but have little or no
response to the same oncogenic mutations.24 The nor-
mal function of Chinmo, Lin-28 and Imp is to specify
early-born larval neurons and glia,25,26 but they also
open a competence window for “single hit” tumor for-
mation; it is unknown if these two functions are
related. This suite of proteins is unlikely to act on a
single locus or a highly specific process because they
provide tumor-forming competence to a diverse array
of oncogenic mutations, including mutants in two
different transcription factors (Prospero and Nerfin-1)

Figure 2. (a-c) Drosophila neural stem cells in the central brain (a) undergo a type I lineage (b) or a more elaborate type II lineage (c). (e-
g) Epigenetic regulation of Drosophila neural stem cells alters their ability to respond to Notch signaling, which is normally present in
stem cell progeny but suppressed by Brm (e) or Osa (f,g), Eyeless (i,j) or other Notch pathway repressors (h).
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and an RNA-binding protein (Brain tumor). All 3 pro-
teins are conserved in mammals,29,30,31 raising the
question of whether they may have a similar function,
and making it important to determine their mecha-
nism of action in both Drosophila and mammals.

Larval type II neuroblasts require Trithorax
to maintain competence to produce INPs

Larval type II neuroblasts are defined by expression of
the transcription factor PointedP1 and lack of expres-
sion of the transcription factor Asense; only 8 neuro-
blasts in each brain lobe are type II
neuroblasts.13,14,15,32 Type II neuroblasts divide asym-
metrically to generate a series of INPs that produce an
average of 10 neurons each, whereas larval type I neu-
roblasts make GMCs that only produce a pair of neu-
rons.13,14,15 How do type II neuroblasts generate INPs
rather than GMCs? Recent work demonstrated that
type II neuroblasts require the Buttonhead (Btd) tran-
scription factor to maintain INP production, and that
Trithorax (member of the SET1/MLL histone methyl-
transferase complex) is required to maintain the btd
locus in a permissive chromatin state, allowing its
expression in type II neuroblasts.33 Loss of Trithorax
led to lack of Btd, and loss of either Trithorax or Btd
led to type II neuroblasts switching to GMC produc-
tion33 (Fig. 2e). They next showed that the loss of type
II neuroblast identity was specifically caused by a loss
of Trx histone methylation activity. Similarly, RNAi
knockdown of several members of the SET1/MLL his-
tone methyltransferase complex that co-purified with
Trx also led to loss of INP production from type II
neuroblasts.33 Thus, Trx histone methylase activity is
required to maintain INPs identity by opposing differ-
entiation cues.

What prevents INPs from taking the opposite path,
and dedifferentiating into neuroblasts or tumors? The
Wang laboratory showed that the Brahma/histone
deacetylase 3/Earmuff (Brm/HDAC3/Erm) complex is
required to maintain INP identity and prevent dedif-
ferentiation into type II neuroblasts34 (Fig. 2e). This
requires the activation of Erm in the new-born INP to
prevent dedifferentiation. Interestingly, recent work
from the Lee laboratory provides insight into this pro-
cess. They showed that the erm enhancer is main-
tained in a poised state within type II neuroblasts by
the Hdac1/Rpd3 histone deacetylase complex.35 This
prevents the activation of differentiation programs in

parental neuroblasts, but enables the rapid activation
of erm in their immature INP progeny, and their sub-
sequently limited proliferative potential. In addition,
Rpd3 deacetylation activity was required for type II
neuroblast responsiveness to the self-renewal factors
Deadpan, Klumpfuss and E(spl)m-gamma, indicating
that these transcription factors utilize a specific epige-
netic landscape in type II NBs to promote self-
renewal. Collectively, these results show that type II
neuroblast competence to produce INPs, and ability
of INPs to initiate a program of differentiation, is reg-
ulated by the cell type-specific actions of multiple
chromatin remodeling complexes.

Aging INPs lose competence to proliferate
in response to Notch signaling

Type II neuroblasts divide asymmetrically to produce
a series of INPs, which have a limited ability to prolif-
erate, dividing only 4–6 times. We recently showed
that aging INPs express a series of 3 temporal tran-
scription factors: Dichaete (Sox family), Grainy head
(CP2 family), and Eyeless (Pax family), which are
important for generating neuronal and glial diversity
within the short INP lineages.36 An interesting ques-
tion is what limits INP proliferation to 4–6 divisions,
when their parental neuroblast can divide »50 times.
Recent work has shown that the chromatin remodeler
Osa (SWI/SNF complex member) and Prdm family
member Hamlet limit INP proliferation.37 Osa is
required for expression of Hamlet in INPs (but not in
other cell types of the lineage), and reducing Osa or
Hamlet levels in INPs led to extension of INP lineages
(Fig. 2f, g). This is not due to derepression of Notch
target genes (none were upregulated by transcriptional
profiling of osa mutant INPs), but rather due to
changes in INP temporal transcription factor expres-
sion: prolonged Grainy head and reduced Eyeless.37

These data suggest a model in which INP chromatin
remodeling is required for proper expression of the
anti-proliferation factor Eyeless, which helps termi-
nate INP proliferation.

How might Eyeless restrict INP proliferation?
Many stem cells and progenitors require Notch signal-
ing to maintain proliferation, so we asked whether
Eyeless limits Notch signaling in aging INPs. It is well
known that misexpression of the Notch intracellular
domain (NICD), a potent inducer of Notch target
gene expression,38 in Type II NBs and young Eyeless-
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negative INPs results in tumor formation15,39,40,41,42

(Fig. 2h). In contrast, we found that NICD expression
in old EyelessC INPs had no effect on the fate or pro-
liferation of INPs, even when the exact same promoter
was used to drive expression to ensure equal levels of
Notch activity39 (Fig. 2i). Furthermore, removal of the
late temporal transcription factor Eyeless restored
competence to generate ectopic cells by de-repressing
Notch target genes in INP progeny (Fig. 2j). Thus,
aging INPs lose competence to respond to Notch sig-
naling, and Eyeless is required to block Notch-induced
proliferation in old INP progeny.39 How does Ey block
Notch signaling? An attractive model is that Ey
recruits SWI/SNF proteins to prevent activation of
Notch target genes in GMCs.43,44 Consistent with this
model, murine Pax6 protein directly binds the SWI/
SNF-related BAF complex to promote neuronal differ-
entiation in murine adult neural progenitors.45 In
addition, a BAF subunit switch triggers the transition
from proliferation to differentiation in mammalian
neural progenitors,46 raising the possibility that both
Drosophila and mammals use similar pathways to reg-
ulate progenitor choice of differentiation or
proliferation.

Aging sensory neuron progenitors change
competence to respond to Notch signaling

Drosophila olfactory receptor neurons (ORNs) are
specified from neuronal progenitors called sensory
organ precursors (SOPs), which undergo three rounds
of division to generate 8 cells, three of which are dis-
tinct ORNs. One ORN is specified by an absence of
Notch signaling (Nab) while 2 distinct ORNs are spec-
ified by high level Notch signaling (Naa and Nba) – in
the absence of Notch signaling these 2 neurons take
an alternate fate.47 How does one signal, Notch, gener-
ate the 2 different ORN fates: Naa and Nba? The
authors found that only Naa expressed the Prdm
member Hamlet, and that Hamlet was necessary and
sufficient to induce Naa identity including axon pro-
jection to the appropriate olfactory glomeruli and
odorant receptor expression.47 How are Notch signal-
ing and Hamlet expression integrated to generate dis-
tinct ORN fates? Genetic experiments indicate that
Hamlet suppresses Notch activity, and biochemical
data support this conclusion. Hamlet directly binds
the CtBP co-repressor, and this binding is required for
Hamlet suppression of Notch signaling. Furthermore,

forced expression of Hamlet in a Drosophila cell line
resulted in altered chromatin structure at Notch target
loci, likely through enhancing H3K27 tri-methylation
(associated with a repressive chromatin state) and
diminishing H3K4 tri-methylation (associated with an
active chromatin state).47 For example, Hamlet
expression decreased the Notch nuclear effector Su(H)
occupancy at the Notch target gene E(spl)m3. Thus,
Hamlet appears to bias Notch signaling by creating
repressive chromatin structure around at least one
Notch target gene, such that high Notch signaling
without Hamlet gives the Nba fate, partial or differen-
tial Notch signaling with Hamlet gives the Naa fate,
and no Notch signaling gives the Nab fate.47 These
findings illustrate how histone modifications can drive
changes in competence by altering the local chromatin
structure of target genes important for neuronal speci-
fication and function, and how neuronal diversity can
be expanded in a stem cell lineage through changes in
competence while reusing the same extrinsic cue.

Mouse

Competence to respond to extrinsic cues depends on
Sox2-regulated chromatin state in neural progenitor
lineages

The Sox family of transcription factors are important
for maintaining stem cell/progenitor identity in many
contexts.48 Sox2 loss of function results in premature
expression of neuronal differentiation genes, and Sox2
overexpression represses neuronal differentiation.49

However, recent work reveals that Sox2 also has a role
in promoting competence of young neurons to initiate
neuronal differentiation in response to extrinsic Wnt
signaling. Conditional Sox2 deletion in adult hippo-
campal neural progenitor cells (NPCs) has shown that
Sox2 limits Polycomb Repressive Complex 2 (PRC2)
activity to maintain a “poised” bivalently marked
H3K4me3/H3K27me3 chromatin state at neuronal
differentiation loci such as NeuroD1 and Bdnf50

(Fig. 3). In this manner, Sox2 prevents the formation
of a “closed” H3K27me3 chromatin state, which
would otherwise block Wnt-induced expression of
neuronal differentiation loci.50,51 Sox2 conditional
knockout mice had lower NeuroD1 levels and apopto-
sis of young neurons; the latter phenotype could be
rescued by targeted re-expression of NeuroD1.50 The
authors propose a model where Sox2 limits PRC2
activity to maintain a poised chromatin state at
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neuronal differentiation genes, thereby giving them
competence to respond to Wnt-induced expression
and subsequent neuronal differentiation (Fig. 3).

Interestingly, this is a different mode of Sox2
action than the authors described previously for
maintaining progenitor identity of hippocampal
NPCs. In that study, they found that Sox2 recruited
the TRRAP/GCN5 histone acetyltransferase com-
plex to maintain “open” H3K9ac chromatin at the
LIN28 locus, allowing this self-renewal promoting
gene to be expressed in NPCs.52 Furthermore,
recent work has illuminated a non-histone, acetyl-
transferase activity for GCN5 that is crucial for ret-
inoic acid responsiveness and proper control of
Wnt, Gli3 and Shh signaling during early dience-
phalic development in embryonic mice.53 Specifi-
cally, their model posits that in the presence of
retinoic acid, GCN-5 mediated acetylation of
TACC1 causes transcriptional de-repression of reti-
noic acid response elements.

Sox2 is also required to maintain the prolifer-
ative potential of retinal progenitor cells by modu-
lating responsiveness to the Notch signaling
pathway.54 Conditional mutations and knockdown
of Sox2 resulted in decreased expression of the
Notch1 receptor, and chromatin immunoprecipita-
tion experiments showed association of Sox2 and
the Notch1 locus. The authors propose a model in
which Sox2 promotes Notch1 receptor expression
in retinal progenitors, giving them competence to
respond to Notch ligands and activating expression

of Notch target genes such as Hes-5, which are
important for maintaining the proliferative capacity
of retinal progenitors.54

Epigenetic silencing of Notch target genes restricts
INP competence to respond to Notch

Neural stem cells (NSCs) in the germinal zone of
developing mammalian cortex have active Notch sig-
naling via the canonical CBF1/SuH/Lag-1 (CSL)
nuclear effector, and express target genes such as Hes-
5 to maintain proliferation and block differentiation.
In contrast, NSC progeny called intermediate neural
progenitors (INPs) are exposed to Notch ligands but
fail to express Notch target genes including a CSL
reporter construct or Hes5, and thus initiate neuronal
differentiation.55,56 What limits INP competence to
respond to Notch/CSL signaling? Recent work has
shown that the Bcl6 oncogene is required to blunt
Notch signaling in INPs. Bcl6 is detected at low levels
in NSCs and high levels in INPs, where it reduces
occupancy of the Mam-1 co-activator protein at the
Hes5 locus, increases occupancy of the Sirt-1 deacety-
lase, leading to silencing of the Hes5 gene.56 The
authors conclude that epigenetic silencing of the Hes5
locus blocks productive Notch signaling in INPs lead-
ing to neuronal differentiation. It will be interesting to
compare this mechanism to that of Eyeless blocking
Notch signaling in Drosophila old INPs (see above);
perhaps in both cases loss of competence to respond
to Notch will be due to epigenetic silencing of specific
Notch target genes.

The role of extrinsic cues and epigenetic
modification in subdividing a single progenitor
competence window

In the developing mammalian hindbrain, Nkx2.2C
progenitors produce motor neurons (MNs) during
early neurogenesis, and then switch to making sero-
tonergic neurons (5HTNs). The homeodomain tran-
scription factor Phox2b is expressed in young
progenitors during MN production, and Phox2b
mutant progenitors fail to make MNs and instead
prematurely give rise to 5HTNs, showing that young
progenitors have an intrinsic competence to generate
5HTNs.57 More recently, Dias et al identified TGFb
signaling as a temporally regulated cue that downre-
gulates Phox2b expression; reduced TGFb signaling
delayed the MN-to-5HTN switch, altering the

Figure 3. Sox2 prevents the Polycomb Repressive Complex (PRC)
from silencing proneural genes such as NeuroD1 via histone H3
lysine 27 trimethylation (K27me3).
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number of neurons in each population.58 This system
illustrates how temporal regulation of cell fate deter-
minates (e.g., Phox2b) can subdivide a single compe-
tence window to generate neuronal diversity, and
how an extrinsic cue can determine the timing of the
switch between neuronal cell types.

In contrast, a different mechanism times the neu-
ronal-to-glial switch that occurs in many regions of
the murine CNS. Although the switch requires an
extrinsic cue, in this case the CNTF/LIF cytokine,
there is also a requirement for epigenomic modifica-
tion. Early cortical progenitors are exposed to CNTF,
yet they still produce neurons.59,60 Similarly, young
cortical progenitors were less competent to produce
glia than older progenitors when exposed to gliogenic
cytokines in culture.61 Even overexpression of CNTF
in young cortical progenitors only generates a slight
increase in glial production.62 What prevents CNTF
from inducing gliogenesis in young progenitors? It
appears that at least one key glial differentiation
gene, Gfap, is highly methylated and thus epigeneti-
cally silenced in young cortical progenitors; elimina-
tion of DNA methyltransferase 1 (Dnmt1) activity
leads to robust precocious production of GFAPC

astrocytes in response to CNTF.63,64

Zebrafish

Insight into how progenitors change competence to
respond to extrinsic cues has come from studies in the
developing zebrafish spinal cord. Zebrafish lateral
floor plate progenitors (LFPs) require Hedgehog (Hh)
signaling to maintain proliferation.65 Progenitors stop
dividing and initiate differentiation by diminishing
their response to Hh signaling; this is achieved, at least
in part, by a regulatory network that restricts apical
cilia formation – a process implicated in perceiving
Hh signaling,66 and controlled by apically restricted
proteins – a hallmark of asymmetrically dividing neu-
ral stem cells and progenitors.67 Previous work
revealed that expression of the apically restricted Par
proteins, Pard3 and Prkci, are repressed by the expres-
sion of miR-219.68 The authors put forth a model
where spinal cord progenitors in the early embryo
proliferate in response to Hh signaling, but the onset
of miR-219 expression leads to Par protein repression
and loss of apical cilia, thereby rendering progenitors
non-competent to respond to Hh signaling and trig-
gering differentiation. This model is supported by the

observations that miR-219 knockdown caused an
extension of Hh signaling, as measured by patched2
expression and an increased number of Sox2C pro-
genitors in the spinal cord. Furthermore, these effects
of miR-219 knockdown could be rescued by treating
embryos with cyclopamine, an inhibitor of Hh signal-
ing. Importantly, expression of Shh ligands in the
developing spinal cord does not diminish from one to
3 day post fertilization (dpf), although expression of
patched2 is lost by 3 dpf, suggesting that progenitors
are no longer competent to respond to Shh ligands.
Thus, microRNAs regulate the competence of neural
progenitors to respond to Hh signaling, leading to a
transition from proliferation to neurogenesis.

Another example of altered neural progenitor
competence comes from the analysis of Kolmer-
Agduhr (KA”) interneuron development. LFPs gen-
erate KA” neurons via combinatorial interactions
between the Notch and Hh signaling pathways.69

Notch signaling is required transiently to maintain
LFP progenitors and to convey competence to
respond to Hh, which is required in LFP progeni-
tors for the subsequent specification of KA” inter-
neurons.69 Early activation of Hh caused the
formation of ectopic KA” interneurons, while late
activation the Hh effector Gli1 inhibited the differ-
entiation of LFP progeny into KA” interneurons.
Thus, Hh signaling could only promote the specifi-
cation of KA” interneurons in LFP progenitors
where Notch signaling was active.69 How Notch
signaling provides competence to respond to Hh
remains unknown, but Notch signaling is known to
alter chromatin state,70,71 and it a likely mechanism
for altering progenitor competence in this system.

Future directions

Work in many systems has now shown that epigenetic
remodeling can alter neural stem cell competence,
thereby resulting in a single neural stem cell generat-
ing diverse progeny in response to a common signal-
ing pathway (e.g., Notch). This allows a limited
number of highly conserved signaling pathways to
generate myriad cell fate outcomes during neural
development. Future work will be needed to identify
factors that trigger chromatin alterations, the precise
nature of the alterations at a genome-wide level, and
the mechanism by which these changes lead to distinct
neuronal and glial cell types. A better understanding
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of how temporally regulated changes in stem cell epi-
genomes bias the response to signaling pathways is
likely to help guide in vitro production of neural cell
types for clinical neurotherapeutics.
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