
LETTERS

A spindle-independent cleavage furrow positioning
pathway
Clemens Cabernard1,2,3, Kenneth E. Prehoda2 & Chris Q. Doe1,2,3

The mitotic spindle determines the cleavage furrow site during
metazoan cell division1,2, but whether other mechanisms exist
remains unknown. Here we identify a spindle-independent mech-
anism for cleavage furrow positioning in Drosophila neuroblasts.
We show that early and late furrow proteins (Pavarotti, Anillin, and
Myosin) are localized to the neuroblast basal cortex at anaphase
onset by a Pins cortical polarity pathway, and can induce a basally
displaced furrow even in the complete absence of a mitotic spindle.
Rotation or displacement of the spindle results in two furrows: an
early polarity-induced basal furrow and a later spindle-induced
furrow. This spindle-independent cleavage furrow mechanism
may be relevant to other highly polarized mitotic cells, such as
mammalian neural progenitors.

Elegant physical or genetic manipulations of the mitotic spindle
have shown that the spindle determines the position of the cleavage
furrow in a wide range of cells1,2. Although this is a common mech-
anism for furrow formation, it may not be the only one, as cleavage-
furrow position during the highly asymmetric mammalian meiotic
divisions can be specified by a spindle-independent chromosomal
cue3. The spindle pathway for furrow positioning is initiated at the
overlapping microtubules of the central spindle, where the ‘central-
spindlin’ protein complex is assembled. Centralspindlin components
include the kinesin Pavarotti (Zen-4 in Caenorhabditis elegans), the
RACGAP50 Tumbleweed (Cyk-4 in C. elegans) and the RhoGEF
Pebble (Ect-2 in C. elegans)1,4. After assembly, the centralspindlin
complex moves to the cell cortex, possibly through a special popu-
lation of stable microtubules5, to form a cortical ring at the site of the
central spindle. The centralspindlin ring subsequently recruits acto-
myosin and initiates cleavage furrow constriction. In contrast, astral
microtubules typically inhibit furrow formation4 (Fig. 1a, left).

Here we test whether the spindle-induced furrow model is sufficient
to account for cleavage furrow positioning during asymmetric cell
division of Drosophila neuroblasts. Neuroblasts establish molecular
asymmetry during early prophase with the apical cortical localization
of the Par complex (Bazooka; Par-6; atypical protein kinase C, aPKC)
and the Pins complex (Partner of Inscuteable (Pins); Gai; Discs large
(Dlg))6. Subsequently, the scaffolding protein Miranda (Mira) and its
cargo proteins Prospero (Pros), Brain tumour (Brat) and Staufen are
localized to the basal cortex6. The mitotic spindle aligns along the
apical/basal axis at metaphase and becomes asymmetric during ana-
phase, with the apical half forming longer astral and central spindle
microtubules7,8. The cleavage furrow is displaced basally, generating a
larger apical daughter cell and a smaller basal daughter cell. It has been
assumed that the centralspindlin complex is the only mechanism for
furrow positioning, because the furrow is always positioned adjacent
to the central spindle, even in mutants that disrupt spindle
asymmetry8–13. One model is that the basal spindle pole is anchored
at the basal cortex, resulting in a basal displacement of the central

spindle and subsequent cleavage furrow11 (Fig. 1a, right). However,
in neuroblasts, experiments such as spindle rotation, spindle displace-
ment or spindle ablation have never been performed to test directly
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Figure 1 | Polarized cortical localization of Pav/Myosin furrow markers.
a, Summary of cortical Pav/Myosin (green) localization during a
representative symmetric cell division (left) or a neuroblast asymmetric cell
division (right). Black, central spindle microtubules; grey, astral
microtubules. b, Basal cortical localization of endogenous Pav/Myosin
proteins in mitotic neuroblasts. c, d, Localization of Pav:GFP and Sqh:GFP
(Myosin) from Supplementary Movies 1–3. Overlay is shown below single-
channel image sequence. Bottom rows show plots of cortical pixel intensity
for each protein around one half of the neuroblast cortex, from apical centre
(top) to basal centre (bottom) of cortex. Apical up, basal down. Myo,
Myosin, MTs, microtubules. Scale bars, 10mm. Time is shown as
minutes:seconds from anaphase onset.
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whether the centralspindlin pathway is the sole mechanism for furrow
positioning.

We began our investigation of neuroblast cleavage furrow posi-
tioning by assaying the timing and localization of three furrow com-
ponents: the early furrow marker Pavarotti (Pav), an essential
centralspindlin component4; Anillin, an early furrow component14;
and Myosin regulatory light chain (called Myosin hereafter, encoded
by the sqh gene), which is an essential component of the contractile
ring. In symmetrically dividing cells, Pav/Anillin/Myosin are uniformly
cortical at metaphase, and become progressively restricted to a cortical
ring adjacent to the central spindle15 (Fig. 1a, left). In neuroblasts, Pav/
Anillin/Myosin proteins were uniformly cortical at metaphase and
enriched at the furrow during anaphase–telophase; in addition, we
saw asymmetric localization of Pav/Anillin/Myosin to the basal cortex
of the neuroblast during early anaphase (Fig. 1b, Supplementary Fig. 1
and data not shown). The same localization was also observed by live
imaging with Pav: green fluorescent protein (GFP)16, Anillin:GFP17 or
Sqh:GFP18 (Myosin) reporter proteins (Fig. 1c, d and Supplementary
Movies 1–3; summarized in Fig. 1a, right). Measurements of pixel
intensity further revealed that the basal enrichment of Pav:GFP,
Anillin:GFP and Sqh:GFP (Myosin) is not uniform; all markers clear
from the apical cortex first, followed by partial depletion from the basal
tip, before accumulation in a basally shifted lateral position (Fig. 1c, d
and data not shown). Our data differ slightly from previous work
showing apical Sqh:GFP localization in prophase neuroblasts19; our
Sqh:GFP live imaging showed fluctuating weak apical or basal cortical
localization during prophase (n 5 10; data not shown). Asymmetric
basal enrichment of Pav/Myosin proteins was detectable 10–20 s before
astral microtubule asymmetry, and over 40 s before central spindle
asymmetry (Supplementary Fig. 2). Pav/Anillin/Myosin asymmetric
cortical localization precedes spindle asymmetry, and thus is not easily
explained by a spindle-induced furrow positioning model.

We next tested the role of the mitotic spindle in generating Pav/
Myosin basal cortical localization and basal furrow positioning. First,
we tested whether spindle astral microtubules were required to generate
Myosin cortical asymmetry. Sas-4 mutant neuroblasts lack centrioles,
centrosomes and all astral microtubules, and were reported to undergo
essentially normal asymmetric cell division10, as do other mutants that
lack spindle-pole asymmetry11,13,20,21. However, the localization of
furrow proteins and the nature of the furrow positioning cue in these
mutants has not been addressed. We found that Sas-4 mutant neuro-
blasts established normal basal cortical localization of Myosin and basal
furrow formation (Fig. 2a), and thus astral microtubules are not
required for Myosin basal cortical localization or basal cleavage furrow
positioning.

We next tested whether central spindle microtubules were required
to generate Myosin cortical asymmetry and basal furrow formation.
We performed live imaging of neuroblasts in which all microtubules
were ablated by colcemid treatment, and a mutation in rough deal (rod)
was used to bypass the metaphase-arrest checkpoint22. Surprisingly, all
colcemid-treated rod mutant neuroblasts showed robust basal locali-
zation of Myosin and generated a basally displaced cleavage furrow,
despite lack of any detectable microtubules (Fig. 2b and Supplemen-
tary Movie 4). Thus complete loss of microtubules does not affect basal
furrow positioning. This is not a non-specific effect of microtubule
loss, because most wild-type neuroblasts treated with colcemid are
metaphase-arrested, maintain uniform cortical Myosin, and have no
furrows (Fig. 2c). Furthermore, rod single mutants localize Myosin in
an asymmetric fashion like wild-type neuroblasts (Supplementary
Fig. 3). We conclude that neuroblasts have a spindle-independent
mechanism for basal cleavage furrow positioning, and that activating
this mechanism requires anaphase onset. We call this the ‘polarity-
induced’ pathway because it is generated by neuroblast cortical
polarity cues (see below).

Wild-type neuroblasts may use both spindle-induced and polarity-
induced furrow positioning pathways, or just one of these pathways.
To test whether both pathways are active in neuroblasts, we rotated or

displaced the mitotic spindle within the neuroblast, and assayed for the
ability of each pathway to specify furrow position. We performed
spindle displacement experiments by examining the minority of
colcemid-treated rod mutant neuroblasts where one or more tiny
spindles form near the apical cortex. In these neuroblasts, we observed
normal asymmetric basal localization of Myosin and basal furrow
formation; slightly later we detected a second furrow adjacent to the
small apical mitotic spindle (Fig. 3a, b and Supplementary Movie 5).
Next, we performed spindle rotation experiments using the mushroom
body defective (mud) mutant. In mud mutants approximately 15% of
the spindles are orthogonal to the normal apical/basal polarity axis23–25,
thereby mimicking the physical spindle rotation experiments possible
in larger cells1,2. We observed that mud mutant neuroblasts with the
spindle orthogonal to the apical/basal polarity axis showed basal cor-
tical localization of Pav/Anillin/Myosin and initiated a basal furrow
(Fig. 3c, Supplementary Movies 6 and 7 and data not shown) that often
pinched off an anucleate basal ‘polar lobe’ (Fig. 3d, Supplementary Fig.
4a and Supplementary Movie 8). Interestingly, basal-furrow initiation
always preceded the spindle-induced furrow initiation (Fig. 3e and
Supplementary Movie 9). Identical findings were observed in three
other mutants that show neuroblast spindle rotation (asterless, centro-
somin and Sas-4; Supplementary Fig. 4b). In both spindle displace-
ment and spindle rotation experiments, the position of the mitotic
spindle is uncoupled from the cortical polarity axis, and this allows us
to observe cleavage furrows formed in response to each pathway. These
experiments show that neuroblasts have two distinct furrow position-
ing pathways: a polarity-induced pathway and a spindle-induced path-
way. In wild-type neuroblasts, both pathways promote basal furrow
positioning, but spindle rotation/displacement experiments allow us
to separate each pathway spatially and temporally (discussed below).

What is the molecular mechanism of the polarity-induced furrow
pathway? We tested the centralspindlin core component Pav, as well
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Figure 2 | Spindle-independent cleavage furrow positioning. a, Sas-4
mutant neuroblast lacks astral microtubules, yet still establishes basal
Myosin localization and basal furrow position (100%, n 5 158). b, Colcemid-
treated rod mutant neuroblast lacks all spindle microtubules, yet still
establishes basal Myosin localization and basal furrow position (100%,
n 5 7). c, Colcemid-treated wild-type neuroblast lacks all spindle
microtubules, remains arrested at metaphase and does not establish basal
Myosin localization or initiate furrow formation (100%, n 5 7). A schematic
of each experiment is shown to the left (blue/red, apical/basal polarity; grey,
microtubules). All genotypes imaged in brains from late second or early
third larval instars. Scale bars, 10 mm. Time is shown as minutes:seconds.

LETTERS NATURE | Vol 467 | 2 September 2010

92
Macmillan Publishers Limited. All rights reserved©2010



as each of the three major cortical polarity protein complexes (apical
Par/aPKC, basal Miranda and apical Pins). We used inducible pav
RNA interference transgene to reduce strongly Pav protein levels
specifically in neuroblasts. This resulted in phenotypes matching that
of a pav null mutation: the neuroblasts were enlarged and polyploid
owing to failure of cytokinesis, and Pav protein was undetectable by
antibody staining (data not shown). Surprisingly, these Pav-depleted
neuroblasts showed normal basal localization of Myosin at early
anaphase, and initiated a transient basal furrow (Fig. 4a). We con-
clude that the canonical centralspindlin pathway is not required for
basal furrow formation. The apical Par complex member aPKC is

essential for proper localization of all known basal proteins6, but it is
not required for basal localization of Myosin (Fig. 4a). Similarly, the
basal scaffolding protein Miranda is not required for Myosin basal
localization (Fig. 4a).

The final known polarity complex we tested was the apical Pins
complex. We scored pins zygotic mutant neuroblasts at late second or
third larval instar; most formed an asymmetric spindle and divided
asymmetrically (89%; n 5 147) and thus could not be assayed for
polarity-induced furrow positioning owing to the presence of the
canonical spindle-induced furrow pathway. More informative were
the approximately 11% of pins mutant neuroblasts that had a sym-
metric spindle and divided symmetrically; all of these neuroblasts
lacked Pav/Myosin basal cortical enrichment, lacked basal furrows
and never formed ‘polar lobes’ (100%, n 5 19; Fig. 4b, Supplemen-
tary Movie 10 and data not shown). To increase the percentage of
symmetrically dividing pins mutant neuroblasts, we combined pins
with a mutation in dlg, which is required for normal spindle asym-
metry9. We found that 100% of the dlg;;pins double mutant neuro-
blasts showed symmetric spindles, and they all lacked Myosin basal
cortical enrichment and basally displaced furrows (100%, n 5 20;
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Figure 4 | Mechanism of polarity-induced furrow formation. a, Basal
Myosin localization in anaphase neuroblasts is normal in neuroblasts
strongly depleted for Pavarotti (Pav), aPKC, Miranda (Mira; mosaic analysis
with a repressible cell marker (MARCM) clones) or zygotic null Gai
mutants. Time is shown as minutes:seconds in all panels. Scale bar, 10 mm.
b, Zygotic pins single mutant larval neuroblast undergoing a symmetric
division and showing symmetric Myosin (Sqh:GFP) localization. c, Zygotic
dlg single mutant anaphase larval neuroblast undergoing a symmetric
division and showing symmetric Myosin (Sqh:GFP) localization. d, Zygotic
dlg;;pins double mutant anaphase neuroblast in early third larval instar
undergoing a symmetric division and showing symmetric Myosin
(Sqh:GFP) localization. e, Summary.
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Figure 3 | Neuroblasts use both spindle-induced and polarity-induced
furrow positioning pathways. a, Schematic of experimental design. Blue/
red, apical/basal polarity; grey, spindle. b, Spindle displacement experiment:
colcemid-treated neuroblasts with tiny apical spindles form two
spatiotemporally distinct furrows: early basal furrow (arrow); later spindle-
associated furrow (arrowhead). c–f, Spindle rotation experiment: mud
mutant neuroblasts with spindles orthogonal to the apical–basal polarity
axis form two spatiotemporally distinct furrows. c, Neuroblast forms an
early basal furrow (arrow), followed by an orthogonal spindle-associated
furrow (arrowhead). d, Neuroblast forms an early basal furrow that pinches
off an anucleate ‘polar lobe’ (arrow). Cherry:Miranda marks the basal cortex.
e, Still pictures from Supplementary Movie 9 showing the basal contractile
ring ‘en face’ to document the progressive constriction of the contractile
ring. Yellow arrows, basal furrow; white arrows, orthogonal spindle-
associated contractile ring. f, Summary of spindle rotation experiment.
Green, Myosin; black, spindle; green dot, midbody remnant. Time is shown
as minutes:seconds. Scale bar, 10mm.
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Fig. 4d). The lack of asymmetric Myosin localization in the pins and
dlg;;pins mutant neuroblasts is due to the loss of Pins, not the sym-
metric spindle, because mud and Gai mutant neuroblasts have sym-
metric spindles and still show basal Myosin localization and basal
‘polar lobe’ formation (Figs 3c and 4a, Supplementary Movie 11 and
data not shown). Thus Pins is an essential component of the polarity-
induced cleavage furrow pathway. To test if Dlg has a role in the
polarity induced furrow pathway, we examined dlg single mutants.
Only a small fraction had a symmetric spindle (6%, n 5 65); of these
neuroblasts, two exhibited basally enriched Myosin (data not show)
and two showed symmetric cortical Myosin (Fig. 4c). This partial
phenotype suggests that Dlg plays a role in furrow positioning, but
that Pins is likely to act through at least one other protein to regulate
cleavage furrow position. We conclude that Pins/Dlg are components
of the spindle-independent cortical polarity-induced cleavage posi-
tioning mechanism.

We have shown that neuroblasts use two pathways for specifying
the site of cleavage furrow position: the well-studied centralspindlin
pathway and a new cortical polarity pathway. In neuroblasts these
pathways appear to work partly redundantly: the polarity-induced
pathway alone can give a basal furrow (for example, in colcemid-
treated rod mutant neuroblasts), whereas the spindle alone can induce
an equatorial furrow (for example, in dlg;;pins mutant neuroblasts)
(summarized in Fig. 4e). Although neuroblasts normally use both
pathways redundantly, other cell types may uncouple the polarity-
induced and spindle-induced pathways. For example, molluscan
embryos often create determinant-filled ‘polar lobes’ which form earlier
and orthogonal to the spindle-induced furrow26. Mammalian embry-
onic neuroepithelial cells are highly elongated along their apical/basal
axis and can initiate cleavage furrowing at their basal endfoot, far from
the site of the apical mitotic spindle27. It will be interesting to see if a
polarity-induced furrow pathway exists in mammalian neuroepithelial
cells, as well as other polarized cell types.

METHODS SUMMARY
We used the mutant alleles aPKCK06403, mirazz178, pinsP89, dlgm52 mud4, gai8,

cnnhk21, Sas-4M, asl2, rodH4.8, the UAS-PavRNAi line 46137 from the Vienna

Drosophila RNAi Center (see Methods for full stock references). Previously

described methods were used for drug treatment28, live imaging29 and antibody

staining29. Detailed methods are available in the Supplementary Information. All

neuroblasts were imaged were from central brains of second or third larval

instars.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Fly strains and genetics. All mutant chromosomes were balanced over Cyo,

actin:GFP, TM3 actin:GFP, Ser, e or TM6B, Tb. We used Oregon R as wild type,

and the following mutant chromosomes and fly strains: aPKCK06403 (ref. 30);

FRT82B mirazz178 (ref. 31); pinsP89 (flybase, rapsP89; ref. 32); dlgm52 (flybase, dlg14;

ref. 33); mud4 (ref. 34); Gai8 (ref. 35); cnnhk21 (ref. 13); FRT82B Sas-4M (ref. 10);

asl2 (ref. 36); rodH4.8 (ref. 22); worGal4 (ref. 9); worGal4, UAS-Cherry:Jupiter (ref.

29); worGal4, UAS-Cherry:Mira (ref. 29); anillin:GFP (ref. 17); baz:GFP (ref. 37);

baz:GFP, mud4 (ref. 29); UAS-GFP:PavNLS5 (ref. 16); Sqh:Cherry (ref. 38);

Sqh:GFP (ref. 18); worGal4, UAS-GFP:Mira, UAS-cherry:Jupiter (ref. 29); UAS-
PavRNAi46137 (ref. 39).

Recombinant chromosomes. The following recombinant chromosomes were

generated using standard genetic procedures: worGal4, UAS-Cherry:Jupiter,

Sqh:GFP (this work); worGal4, UAS-GFP:PavNLS5 (this work).

MARCM analysis. For generating Mira MARCM clones40, we crossed the ana-

lysis line hsFLP70/hsFLP70; worGal4, UAS-Cherry:Jupiter, Sqh:GFP, tubGal80

FRT82B/TM6C, Sb (this work) to Mira FRT82B mirazz178 and heat-shocked

the progeny 24–48 h after larval hatching for 1 h at 37 uC. For live imaging, mira

mutant clones of third-instar larvae were used.

Pavarotti RNAi experiment. Pavarotti knockdown was achieved by crossing

worGal4 (ref. 9) driver line to UAS-PavRNAi46137 (ref. 39). Loss of Pavarotti

was confirmed using the anti-Pav antibody16.

Colcemid experiments. For colcemid experiments, the following strains were

used: 1; worGal4, UAS-Cherry:Jupiter, Sqh:GFP (this work) or 1; worGal4,

UAS-Cherry:Jupiter, Sqh:GFP; rodH4.8 (this work).

Wild-type or rodH4.8 mutant neuroblasts were incubated with colcemid in live

imaging medium29 at a final concentration of 0.1mm ml21. Live imaging was

started without delay. Mild spindle phenotypes became apparent immediately
after colcemid exposure, whereas complete spindle depolymerization was seen

approximately 30–60 min after colcemid addition.

Immunohistochemistry. The following antibodies were used for this study:

guinea pig anti-Miranda (1:1,000), rabbit anti-Zipper (1:500; this work), rabbit

anti-Pavarotti (1:500)16, mouse anti-Tubulin DM1A (Sigma, 1:1,500), rat anti-

Pins (1:300)25 and rabbit anti-Gai (1:500)41. Secondary antibodies were from

Invitrogen/Molecular Probes.

Imaging, post-imaging procedures and measurements. Live imaging methods

were previously described29. Fixed preparations were imaged on a Leica SP2, and

for Supplementary Fig. 1a on a Leica SP5, confocal microscope. Live samples

were imaged on a McBain spinning disc confocal microscope equipped with a

Hamamatsu EM-CCD (electron-multiplying charge-coupled device) camera,

using a 363 1.4 numerical aperture oil-immersion objective. Pixel intensity

measurements (Fig. 1c, d) were performed using ImageJ. Only one-half of the

neuroblasts’ cortex was measured starting at the apical cortex and ending at the

basal cortex. Post-imaging processing and measurements were performed in

ImageJ or Imaris 6.2–7.0 (Bitplane).

Larval staging. For all experiments, late second- or third-instar larvae were used

for analysis.
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